Skip to main content

Basal brain oxidative and nitrative stress levels are finely regulated by the interplay between superoxide dismutase 2 and p53.

Author
Abstract
:

Superoxide dismutases (SODs) are the primary reactive oxygen species (ROS)-scavenging enzymes of the cell and catalyze the dismutation of superoxide radicals O2- to H2O2 and molecular oxygen (O2). Among the three forms of SOD identified, manganese-containing SOD (MnSOD, SOD2) is a homotetramer located wholly in the mitochondrial matrix. Because of the SOD2 strategic location, it represents the first mechanism of defense against the augmentation of ROS/reactive nitrogen species levels in the mitochondria for preventing further damage. This study seeks to understand the effects that the partial lack (SOD2(-/+) ) or the overexpression (TgSOD2) of MnSOD produces on oxidative/nitrative stress basal levels in different brain isolated cellular fractions (i.e., mitochondrial, nuclear, cytosolic) as well as in the whole-brain homogenate. Furthermore, because of the known interaction between SOD2 and p53 protein, this study seeks to clarify the impact that the double mutation has on oxidative/nitrative stress levels in the brain of mice carrying the double mutation (p53(-/-) × SOD2(-/+) and p53(-/-) × TgSOD2). We show that each mutation affects mitochondrial, nuclear, and cytosolic oxidative/nitrative stress basal levels differently, but, overall, no change or reduction of oxidative/nitrative stress levels was found in the whole-brain homogenate. The analysis of well-known antioxidant systems such as thioredoxin-1 and Nrf2/HO-1/BVR-A suggests their potential role in the maintenance of the cellular redox homeostasis in the presence of changes of SOD2 and/or p53 protein levels.

Year of Publication
:
2015
Journal
:
Journal of neuroscience research
Volume
:
93
Issue
:
11
Number of Pages
:
1728-39
ISSN Number
:
0360-4012
URL
:
https://doi.org/10.1002/jnr.23627
DOI
:
10.1002/jnr.23627
Short Title
:
J Neurosci Res
Download citation