Skip to main content

Enhancer of polycomb maintains germline activity and genome integrity in Drosophila testis.

Author
Abstract
:

Tissue homeostasis depends on the ability of tissue-specific adult stem cells to maintain a balance between proliferation and differentiation, as well as ensure DNA damage repair. Here, we use the Drosophila male germline stem cell system to study how a chromatin factor, enhancer of polycomb [E(Pc)], regulates the proliferation-to-differentiation (mitosis-to-meiosis) transition and DNA damage repair. We identified two critical targets of E(Pc). First, E(Pc) represses CycB transcription, likely through modulating H4 acetylation. Second, E(Pc) is required for accumulation of an important germline differentiation factor, Bag-of-marbles (Bam), through post-transcriptional regulation. When E(Pc) is downregulated, increased CycB and decreased Bam are both responsible for defective mitosis-to-meiosis transition in the germline. Moreover, DNA double-strand breaks (DSBs) accumulate upon germline inactivation of E(Pc) under both physiological condition and recovery from heat shock-induced endonuclease expression. Failure of robust DSB repair likely leads to germ cell loss. Finally, compromising the activity of Tip60, a histone acetyltransferase, leads to germline defects similar to E(Pc) loss-of-function, suggesting that E(Pc) acts cooperatively with Tip60. Together, our data demonstrate that E(Pc) has pleiotropic roles in maintaining male germline activity and genome integrity. Our findings will help elucidate the in vivo molecular mechanisms of E(Pc).

Year of Publication
:
2018
Journal
:
Cell death and differentiation
Date Published
:
2018
ISSN Number
:
1350-9047
URL
:
http://dx.doi.org/10.1038/s41418-017-0056-5
DOI
:
10.1038/s41418-017-0056-5
Short Title
:
Cell Death Differ
Download citation