Skip to main content

Olfactory receptor surface expression is driven by association with the beta2-adrenergic receptor.

Author
Abstract
:

Olfactory receptors (ORs) comprise more than half of the large class I G protein-coupled receptor (GPCR) superfamily. Although cloned over a decade ago, little is known about their properties because wild-type ORs do not efficiently reach the cell surface following heterologous expression. Receptor-receptor interactions strongly influence surface trafficking of other GPCRs, and we examined whether a similar mechanism might be involved in OR surface expression. Olfactory neurons are known to express beta-adrenergic receptors (ARs), and we found that coexpression with beta(2)-ARs, but not any other AR subtypes, dramatically increased mouse 71 (M71) OR surface expression in human embryonic kidney 293 cells. A persistent physical interaction between M71 ORs and beta(2)-ARs was shown by coimmunoprecipitation and by cointernalization of the two receptors in response to their specific ligands. Also, coexpression of wild-type M71 ORs with beta(2)-ARs resulted in cAMP responses to the M71 ligand acetophenone. Finally, in situ hybridization studies showed extensive colocalization of M71 OR and beta(2)-AR expression in mouse olfactory epithelium. These data demonstrate the successful heterologous surface expression of a functional wild-type OR and reveal that persistent physical association with other GPCRs can control OR surface expression.

Year of Publication
:
2004
Journal
:
Proceedings of the National Academy of Sciences of the United States of America
Volume
:
101
Issue
:
37
Number of Pages
:
13672-6
Date Published
:
2004
ISSN Number
:
0027-8424
URL
:
https://www.pnas.org/doi/10.1073/pnas.0403854101?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
DOI
:
10.1073/pnas.0403854101
Short Title
:
Proc Natl Acad Sci U S A
Download citation